Alterations in a redox oxygen sensing mechanism in chronic hypoxia

Author:

Reeve H. L.12,Michelakis E.3,Nelson D. P.4,Weir E. K.124,Archer S. L.35

Affiliation:

1. Departments of Medicine and

2. Physiology, University of Minnesota, Minneapolis 55455;

3. Medicine and

4. Department of Medicine, Veteran's Affairs Medical Center, Minneapolis, Minnesota 55417; and Departments of

5. Physiology, University of Alberta, Edmonton, Canada T6G 2B7

Abstract

The mechanism of acute hypoxic pulmonary vasoconstriction (HPV) may involve the inhibition of several voltage-gated K+channels in pulmonary artery smooth muscle cells. Changes in Po 2 can either be sensed directly by the channel(s) or be transmitted to the channel via a redox-based effector mechanism. In control lungs, hypoxia and rotenone acutely decrease production of activated oxygen species, inhibit K+channels, and cause constriction. Two-day and 3-wk chronic hypoxia (CH) resulted in a decrease in basal activated oxygen species levels, an increase in reduced glutathione, and loss of HPV and rotenone-induced constriction. In contrast, 4-aminopyridine- and KCl-mediated constrictions were preserved. After 3-wk CH, pulmonary arterial smooth muscle cell membrane potential was depolarized, K+ channel density was reduced, and acute hypoxic inhibition of whole cell K+ current was lost. In addition, Kv1.5 and Kv2.1 channel protein was decreased. These data suggest that chronic reduction of the cytosol occurs before changes in K+ channel expression. HPV may be attenuated in CH because of an impaired redox sensor.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3