Laryngeal muscle response to phasic and tonic upper airway pressure and flow

Author:

Stella M. H.1,England S. J.1

Affiliation:

1. Department of Pediatrics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick 08903; and Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854

Abstract

The hypothesis that respiratory modulation due to upper airway (UA) pressure and flow is dependent on stimulus modality and respiratory phase-specific activation was assessed in anesthetized, tracheotomized, spontaneously breathing piglets. Negative pressure and flow applied to the isolated UA at room or body temperature during inspiration only enhanced posterior cricoarytenoid muscle activity from that present without UA pressure and flow (baseline) by 15–20%. Time shifting the onset of UA flow relative to tracheal flow decreased this enhancement. The same enhancement was observed with oscillatory or constant airflow. UA positive pressure and flow at room or body temperature applied during expiration only enhanced thyroarytenoid muscle activity from baseline by 50–160%. The same enhancement was observed with oscillatory or constant airflow at body temperature. Constant positive pressure and flow enhanced thyroarytenoid muscle activity more than oscillatory pressure and flow at room temperature. We conclude that the respiratory modulation of UA afferents is processed in a phase-specific fashion and is dependent on stimulus modality (tonic vs. phasic).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3