Affiliation:
1. Departments of Medicine and
2. Pharmaceutics and Pharmacodynamics, University of Illinois at Chicago, and
3. Veterans Affairs Chicago Health Care System West Side Division, Chicago, Illinois 60612
Abstract
The purpose of this study was to pharmacologically characterize the adenosine receptor subtype(s) that mediates adenosine-induced increases in macromolecular efflux from the intact hamster cheek pouch. Using intravital microscopy, we found that 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX), a selective adenosine receptor-1 antagonist, but not 3,7-dimethyl-1-propargylxanthine (DMPX), a selective adenosine receptor-2 antagonist, significantly attenuated adenosine-induced leaky site formation and increased clearance of fluorescein isothiocyanate-labeled dextran (molecular mass, 70 kDa) from the intact hamster cheek pouch ( P < 0.05). Both compounds had no significant effects on bradykinin-induced responses. Nanomolar concentrations of R(−)- N 6-(2-phenylisopropyl)-adenosine [R(−)-PIA], a selective adenosine A1 agonist, evoked significant, concentration-dependent increases in macromolecular efflux. This response was significantly attenuated by PACPX but not by DMPX. In contrast, CGS-21680, a selective adenosine A2agonist, increased macromolecular efflux but only at micromolar concentrations. This response was significantly attenuated by DMPX but not by PACPX. Suffusion of nitroglycerin had no significant effects on R(−)-PIA- and CGS-21680-induced responses. In addition, suffusion of N G-nitro-l-arginine methyl ester, a nitric oxide synthase inhibitor, had no significant effects on adenosine-induced responses. Indomethacin had no significant effects on adenosine-, R(−)-PIA-, and CGS-21680-induced increases in macromolecular efflux. Collectively, these data indicate that adenosine increases macromolecular efflux from the intact hamster cheek pouch by stimulating high-affinity adenosine A1 receptors in a specific, nitric oxide- and prostaglandin-independent fashion.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献