Multiple firing of single muscle vasoconstrictor neurons during cardiac dysrhythmias in human heart failure

Author:

Elam Mikael12,Macefield Vaughan12

Affiliation:

1. Department of Clinical Neurophysiology, Institute for Clinical Neuroscience, Sahlgren University Hospital, S-413 45 Göteborg, Sweden; and

2. Prince of Wales Medical Research Institute, Sydney, New South Wales 2031, Australia

Abstract

Single vasoconstrictor nerve fibers in humans normally fire only once but have the capacity to fire as many as eight times, per cardiac interval. Our laboratory recently demonstrated that the mean firing frequency of individual vasoconstrictor fibers is more than doubled in the sympathoexcitation associated with congestive heart failure (Macefield VG, Rundqvist B, Sverrisdottir YB, Wallin BG, and Elam M. Circulation 100: 1708–1713, 1999). However, the propensity to fire only once per cardiac interval was retained. In the present retrospective study, we tested the hypothesis that vasoconstrictor fibers fire more than once per cardiac interval in response to transient sympathoexcitatory stimuli, providing one mechanism for further increase of an already augmented sympathetic discharge. Six patients with congestive heart failure (New York Heart Association functional class II–IV; left ventricular ejection range 13–37%, average 22%) were studied at rest and during premature ectopic heartbeats. Analyzed for a total of 60 premature beats, the average firing probability of 10 vasoconstrictor fibers increased from 61 to 80% in the prolonged cardiac interval (i.e., reduced diastolic pressure) after premature beats. The incidence of multiple within-burst firing increased markedly, with two spikes being more common than one. Our results illustrate two different mechanisms (increases in firing probability and multiple within-burst firing), and indirectly indicate a third mechanism (recruitment of previously silent fibers), for acute sympathoexcitatory responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3