Low-pass filtering, a new method of fractal analysis: application to PET images of pulmonary blood flow

Author:

Venegas Jose G.1,Galletti Gaetano G.1

Affiliation:

1. Department of Biomedical Engineering, Anesthesiology Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114

Abstract

The pattern of a spatial structure that repeats itself independently of the scale of magnification or resolution is often characterized by a fractal dimension ( D). Two-dimensional low-pass filtering, which may serve as a method to assess D, was applied to functional images of pulmonary perfusion measured by positron emission tomography. The corner frequency of a low-pass filter is inversely proportional to the resolution scale. The method was applied to three types of images: random noise images, synthetic fractal images, and positron emission tomographic images of pulmonary perfusion. Images were processed with two-dimensional low-pass filters of decreasing corner frequencies, and a spatial heterogeneity index, the coefficient of variation, was calculated for each low-pass-filtered image. The natural logarithm of the coefficient of variation scaled linearly with the natural logarithm of the resolution scale for the PET images studied (average R 2 = 0.99). D ranged from 1.25 to 1.36 for the residual distribution of pulmonary perfusion after vertical gradients were removed by linear regression. D of the same data without removal of vertical gradients ranged from 1.11 to 1.14, but the fractal plots had systematic deviations from linearity and a lower linear correlation coefficient ( R 2 = 0.96). The method includes all data in the lung field and is insensitive to the effects of misregistration. We conclude that low-pass filtering offers new insights into the interpretation of D of two-dimensional functional images as a measure of the frequency content of spatial heterogeneity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3