Magnetic resonance behavior of normal and diseased lungs: spherical shell model simulations

Author:

Durney Carl H.1,Cutillo Antonio G.2,Ailion David C.3

Affiliation:

1. Departments of Electrical Engineering,

2. Medicine, and

3. Physics, University of Utah, Salt Lake City, Utah 84112

Abstract

The alveolar air-tissue interface affects the lung NMR signal, because it results in a susceptibility-induced magnetic field inhomogeneity. The air-tissue interface effect can be detected and quantified by measuring the difference signal (Δ) from a pair of NMR images obtained using temporally symmetric and asymmetric spin-echo sequences. The present study describes a multicompartment alveolar model (consisting of a collection of noninteracting spherical water shells) that simulates the behavior of Δ as a function of the level of lung inflation and can be used to predict the NMR response to various types of lung injury. The model was used to predict Δ as a function of the inflation level (with the assumption of sequential alveolar recruitment, partly parallel to distension) and to simulate pulmonary edema by deriving equations that describe Δ for a collection of spherical shells representing combinations of collapsed, flooded, and inflated alveoli. Our theoretical data were compared with those provided by other models and with experimental data obtained from the literature. Our results suggest that NMR Δ measurements can be used to study the mechanisms underlying the lung pressure-volume behavior, to characterize lung injury, and to assess the contributions of alveolar recruitment and distension to the lung volume changes in response to the application of positive airway pressure (e.g., positive end-expiratory pressure).

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3