Constraints on cardiac hypertrophy imposed by myocardial viscosity

Author:

Denslow Stewart1

Affiliation:

1. South Carolina Children's Heart Center, Medical University of South Carolina, Charleston, South Carolina 29425

Abstract

Laplace's law constrains how thin the ventricular wall may be without experiencing excessive stress. The present study investigated constraints, imposed by myocardial viscosity (resistance to internal rearrangement), on how thick the wall may be. The ventricle was modeled as a contracting, spherical shell. The analysis demonstrated that viscosity generates stress and energy dissipation with inverse fourth- and eighth-power dependence, respectively, on distance from the cavity center. This result derives from the combination of squared dependence of viscous forces on shearing velocity gradients and the greater shear rearrangement required for inner layers of a contracting sphere. These predictions are based solely on geometry and fundamentals of viscosity and are independent of material properties, cytoskeletal structure, and internal structural forces. Calculated values of energy and force required to overcome viscosity were clearly large enough to affect the extent of thickening of the left ventricle. It is concluded that load-independent viscous resistance to contraction is an important factor in cardiac mechanics, especially of the thickened ventricles of concentric hypertrophy.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3