Effects of anodal vs. cathodal pacing on the mechanical performance of the isolated rabbit heart

Author:

Thakral Anshul1,Stein Louis H.1,Shenai Mahesh1,Gramatikov Boris I.1,Thakor Nitish V.1

Affiliation:

1. Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205

Abstract

Previous studies have suggested that anodal pacing enhances electrical conduction in the heart near the pacing site. It was hypothesized that enhanced conduction by anodal pacing would also enhance ventricular pressure in the heart. Left ventricular pressure measurements were made in isolated, Langendorff-perfused rabbit hearts by means of a Millar pressure transducer with the use of a balloon catheter fixed in the left ventricle. The pressure wave was analyzed for maximum pressure (Pmax) generated in the left ventricle and the work done by the left ventricle (Parea). Eight hearts were paced with monophasic square-wave pulses of varying amplitudes (2, 4, 6, and 8 V) with 100 pulses of each waveform delivered to the epicardium. Anodal stimulation pulses showed statistically significant improvement in mechanical response at 2, 4, and 8 V. Relative to unipolar cathodal pacing, unipolar anodal pacing improved Pmax by 4.4 ± 2.3 (SD), 5.3 ± 3.1, 3.5 ± 4.9, and 4.8 ± 1.9% at 2, 4, 6, and 8 V, respectively. Unipolar anodal stimulation also improved Parea by 9.0 ± 3.0, 12.0 ± 6.0, 10.1 ± 7.7, and 11.9 ± 6.0% at 2, 4, 6, and 8 V, respectively. Improvements in Pmax and Parea indicate that an anodally paced heart has a stronger mechanical response than does a cathodally paced heart. Anodal pacing might be useful as a novel therapeutic technology to treat mechanically impaired or failed hearts.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3