Affiliation:
1. School of Health Sciences, Deakin University, Burwood, Victoria 3125, Australia
Abstract
To investigate the effect of exercise on GLUT-4, hexokinase, and glycogenin gene expression in human skeletal muscle, 10 untrained subjects (6 women and 4 men, 21.4 ± 1.2 yr, 66.3 ± 5.0 kg, peak oxygen consumption = 2.30 ± 0.19 l/min) exercised for 60 min on a cycle ergometer at a power output requiring 73 ± 4% peak oxygen consumption. Muscle samples were obtained by needle biopsy before, immediately after, and 3 h after exercise. Gene expression was quantified, relative to 29S ribosomal protein cDNA, by RT-PCR. GLUT-4 gene expression was increased immediately after exercise (1.7 ± 0.4 vs. 0.9 ± 0.3 arbitrary units; P < 0.05) and remained significantly higher than baseline 3 h after the end of exercise (2.2 ± 0.4 vs. 0.9 ± 0.3 arbitrary units; P < 0.05). Hexokinase II gene expression was significantly higher than the resting value 3 h after the end of exercise (2.9 ± 0.4 vs. 1.3 ± 0.3 arbitrary units; P < 0.05). Exercise increased glycogenin mRNA more than twofold (2.8 ± 0.6 vs. 1.2 ± 0.2 arbitrary units; P < 0.05) 3 h after the end of exercise. For the first time, we report that a single bout of exercise is sufficient to cause upregulation of GLUT-4 and glycogenin gene expression in human skeletal muscle. Whether these increases, together with the associated increase in hexokinase II gene expression, lead to increased expression of these key proteins in skeletal muscle and contribute to the enhanced skeletal muscle glucose uptake, glycogen synthesis, and insulin action observed following exercise remains to be determined.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献