Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise

Author:

Chen Yingjie1,Serfass Robert C.1,Mackey-Bojack Shannon M.2,Kelly Karen L.3,Titus Jack L.3,Apple Fred S.12

Affiliation:

1. Division of Kinesiology, School of Kinesiology and Leisure Studies, University of Minnesota, Minneapolis 55455;

2. Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Hennepin County Medical Center, Minneapolis 55404; and

3. Jesse E. Edwards Registry of Cardiovascular Disease, St. Paul, Minnesota 55102

Abstract

The goal of this study was to determine whether the stress of forced exercise would result in injury to the myocardium. Male rats with 8% of body weight attached to the tail were forced to swim 3.5 h (3.5S), forced to swim 5 h (5S), or pretrained for 8 days and then forced to swim 5 h (T5S). Rats were killed immediately after they swam (0 h PS) and at 3 h (3 h PS), 24 h (24 h PS), and 48 h after they swam (48 h PS). Tissue homogenates of the left ventricle were analyzed by Western blot analysis for cardiac troponin T (cTnT). Serum cTnT was quantified by immunoassay. Results indicated that, in the 3.5S, 5S, and T5S groups, serum cTnT was significantly ( P < 0.01) increased at 0 and 3 h PS. The 5S group demonstrated a greater increase in serum cTnT than the 3.5S group ( P < 0.01) and the T5S group ( P < 0.01) at 0 h PS. Western blot analysis indicated significant decreases ( P < 0.01) in myocardial cTnT in the 5S group only at 0 h PS ( P < 0.01) and 3 h PS ( P < 0.05). Histological evidence of localized myocyte damage demonstrated by interstitial inflammatory infiltrates consisting of neutrophils, lymphocytes, and histiocytes, as well as vesicular nuclei-enlarged chromatin patterns, was observed in left ventricle specimens from the 5S group at 24 and 48 h PS. Our findings demonstrate that stressful, forced exercise induces alterations in myocardial cTnT and that training before exercise attenuates the exercise-induced heart damage.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3