Oxygen sensing by the carotid body chemoreceptors

Author:

Prabhakar Nanduri R.1

Affiliation:

1. Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

Abstract

Carotid bodies are sensory organs that detect changes in arterial blood oxygen, and the ensuing reflexes are critical for maintaining homeostasis during hypoxemia. During the past decade, tremendous progress has been made toward understanding the cellular mechanisms underlying oxygen sensing at the carotid body. The purpose of this minireview is to highlight some recent concepts on sensory transduction and transmission at the carotid body. A bulk of evidence suggests that glomus (type I) cells are the initial site of transduction and that they release transmitters in response to hypoxia, which causes depolarization of nearby afferent nerve endings, leading to an increase in sensory discharge. There are two main hypotheses to explain the transduction process that triggers transmitter release. One hypothesis assumes that a biochemical event associated with a heme protein triggers the transduction cascade. The other hypothesis suggests that a K+ channel protein is the oxygen sensor and that inhibition of this channel by hypoxia leading to depolarization is a seminal event in transduction. Although there is body of evidence supporting and questioning each of these, this review will try to point out that the truth lies somewhere in an interrelation between the two. Several transmitters have been identified in glomus cells, and they are released in response to hypoxia. However, their precise roles in sensory transmission remain uncertain. It is hoped that future studies involving transgenic animals with targeted disruption of genes encoding transmitters and their receptors may resolve some of the key issues surrounding the sensory transmission at the carotid body. Further studies are necessary to identify whether a single sensor or multiple oxygen sensors are needed for the transduction process.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 217 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3