Evaluation of the cerebral hemodynamic response to rhythmic handgrip

Author:

Giller Cole A.1,Giller Angela M.1,Cooper Christopher R.1,Hatab Mustapha R.1

Affiliation:

1. Departments of Neurological Surgery and Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-8855

Abstract

The response of the cerebral circulation to exercise has been studied with transcranial Doppler ultrasound (TCD) because this modality provides continuous measurements of blood velocity and is well suited for the exercise environment. The use of TCD as an index of cerebral blood flow, however, requires the assumption that the diameter of the insonated vessel is constant. Here, we examine this assumption for rhythmic handgrip using a spectral index designed to measure trends in vessel flow. Nineteen normal subjects were studied during 5 min of volitional maximum rhythmic right handgrip at 1 Hz. TCD velocities from both middle arteries (left and right), blood pressure, and end-tidal Pco 2 were recorded every 10 s. A spectral weighted sum was also calculated as a flow index (FI). Averages were computed from the last 2 min of handgrip. Relative changes in velocity, FI, and pressure were calculated. The validity of FI was tested by comparing the change in diameter derived from equations relating flow and diameter. Mean blood pressure increased 23.8 ± 17.8% (SD), and velocity increased 13.3 ± 9.8% (left) and 9.6 ± 8.3% (right). Although the mean change in FI was small [2.0 ± 18.2% (left) and 4.7 ± 29.7% (right)], the variation was high: some subjects showed a significant increase in FI and others a significant decrease. Diameter estimates from two equations relating flow and luminal area were not significantly different. Decreases in FI were associated with estimated diameter decreases of 10%. Our data suggest that the cerebral blood flow (CBF) response to rhythmic handgrip is heterogeneous and that middle cerebral artery flow can decrease in some subjects, in agreement with prior studies using the Kety-Schmidt technique. We speculate that the velocity increase is due to sympathetically mediated vasoconstriction rather than a ubiquitous flow increase. Our data suggest that the use of ordinary TCD velocities to interpret the CBF response during exercise may be invalid.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3