Exposure to hypoxia produces long-lasting sympathetic activation in humans

Author:

Xie Ailiang1,Skatrud James B.1,Puleo Dominic S.1,Morgan Barbara J.2

Affiliation:

1. Departments of Medicine and

2. Surgery, University of Wisconsin, and Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705

Abstract

The relative contributions of hypoxia and hypercapnia in causing persistent sympathoexcitation after exposure to the combined stimuli were assessed in nine healthy human subjects during wakefulness. Subjects were exposed to 20 min of isocapnic hypoxia (arterial O2 saturation, 77–87%) and 20 min of normoxic hypercapnia (end-tidal Pco 2, +5.3–8.6 Torr above eupnea) in random order on 2 separate days. The intensities of the chemical stimuli were manipulated in such a way that the two exposures increased sympathetic burst frequency by the same amount (hypoxia: 167 ± 29% of baseline; hypercapnia: 171 ± 23% of baseline). Minute ventilation increased to the same extent during the first 5 min of the exposures (hypoxia: +4.4 ± 1.5 l/min; hypercapnia: +5.8 ± 1.7 l/min) but declined with continued exposure to hypoxia and increased progressively during exposure to hypercapnia. Sympathetic activity returned to baseline soon after cessation of the hypercapnic stimulus. In contrast, sympathetic activity remained above baseline after withdrawal of the hypoxic stimulus, even though blood gases had normalized and ventilation returned to baseline levels. Consequently, during the recovery period, sympathetic burst frequency was higher in the hypoxia vs. the hypercapnia trial (166 ± 21 vs. 104 ± 15% of baseline in the last 5 min of a 20-min recovery period). We conclude that both hypoxia and hypercapnia cause substantial increases in sympathetic outflow to skeletal muscle. Hypercapnia-evoked sympathetic activation is short-lived, whereas hypoxia-induced sympathetic activation outlasts the chemical stimulus.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3