Affiliation:
1. Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
Abstract
Tobacco smoke (TS) exposure induces bronchoconstriction and increases airway secretions and plasma extravasation in certain sensitive individuals, particularly those with asthma. C-fiber activation also induces these effects. Although the mechanism by which chronic TS exposure induces airway dysfunction is not well understood, TS exposure may enhance C-fiber responsiveness. To investigate the effect of chronic TS exposure on C-fiber responsiveness to capsaicin and bradykinin, especially in atopic individuals, we exposed ovalbumin (OA)-sensitized guinea pigs to TS (5 mg/l air, 30 min/day for 7 days/wk) or to compressed air. Nonsensitized guinea pigs were also exposed to either compressed air or TS. Beginning after 120 days of exposure, C fibers and rapidly adapting receptors (RARs) were challenged with capsaicin and bradykinin. TS exposure enhanced sensory receptor and airway responsiveness to both intravenous capsaicin and bradykinin challenge. C-fiber, RAR, and airway responsiveness to capsaicin challenge was greatest in OA-sensitized guinea pigs exposed to TS. OA alone induced capsaicin hyperresponsiveness at 5 μg. Airway responsiveness to bradykinin was also greatest in OA-sensitized guinea pigs exposed to TS. OA alone enhanced C-fiber responsiveness to bradykinin at 5 and 10 μg. C-fiber activation by either agonist appeared direct, whereas RAR activation appeared indirect. Therefore, a mechanism of airway hyperirritability induced by the combination of OA sensitization and chronic TS exposure may include hyperirritability of lung C fibers.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献