Form follows function: how muscle shape is regulated by work

Author:

Russell Brenda1,Motlagh Delara1,Ashley William W.1

Affiliation:

1. Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612

Abstract

What determines the shape, size, and force output of cardiac and skeletal muscle? Chicago architect Louis Sullivan (1856–1924), father of the skyscraper, observed that “form follows function.” This is as true for the structural elements of a striated muscle cell as it is for the architectural features of a building. Function is a critical evolutionary determinant, not form. To survive, the animal has evolved muscles with the capacity for dynamic responses to altered functional demand. For example, work against an increased load leads to increased mass and cross-sectional area (hypertrophy), which is directly proportional to an increased potential for force production. Thus a cell has the capacity to alter its shape as well as its volume in response to a need for altered force production. Muscle function relies primarily on an organized assembly of contractile and other sarcomeric proteins. From analysis of homogenized cells and molecular and biochemical assays, we have learned about transcription, translation, and posttranslational processes that underlie protein synthesis but still have done little in addressing the important questions of shape or regional cell growth. Skeletal muscles only grow in length as the bones grow; therefore, most studies of adult hypertrophy really only involve increased cross-sectional area. The heart chamber, however, can extend in both longitudinal and transverse directions, and cardiac cells can grow in length and width. We know little about the regulation of these directional processes that appear as a cell gets larger with hypertrophy or smaller with atrophy. This review gives a brief overview of the regulation of cell shape and the composition and aggregation of contractile proteins into filaments, the sarcomere, and myofibrils. We examine how mechanical activity regulates the turnover and exchange of contraction proteins. Finally, we suggest what kinds of experiments are needed to answer these fundamental questions about the regulation of muscle cell shape.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3