Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling

Author:

Burke Louise M.1,Angus Damien J.2,Cox Gregory R.1,Cummings Nicola K.1,Febbraio Mark A.2,Gawthorn Kathryn1,Hawley John A.3,Minehan Michelle1,Martin David T.1,Hargreaves Mark4

Affiliation:

1. Sports Science and Sports Medicine, Australian Institute of Sport, Belconnen 2616;

2. Department of Physiology, The University of Melbourne, Parkville 3052;

3. Exercise Metabolism Group, Department of Human Biology and Movement Science, Royal Melbourne Institute of Technology University, Bundoora 3183; and

4. School of Health Sciences, Deakin University, Burwood 3125, Australia

Abstract

For 5 days, eight well-trained cyclists consumed a random order of a high-carbohydrate (CHO) diet (9.6 g · kg−1 · day−1 CHO, 0.7 g · kg−1 · day−1 fat; HCHO) or an isoenergetic high-fat diet (2.4 g · kg−1 · day−1 CHO, 4 g · kg−1 · day−1 fat; Fat-adapt) while undertaking supervised training. On day 6,subjects ingested high CHO and rested before performance testing on day 7 [2 h cycling at 70% maximal O2consumption (SS) + 7 kJ/kg time trial (TT)]. With Fat-adapt, 5 days of high-fat diet reduced respiratory exchange ratio (RER) during cycling at 70% maximal O2 consumption; this was partially restored by 1 day of high CHO [0.90 ± 0.01 vs. 0.82 ± 0.01 ( P < 0.05) vs. 0.87 ± 0.01 ( P < 0.05), for day 1, day 6, and day 7, respectively]. Corresponding RER values on HCHO trial were [0.91 ± 0.01 vs. 0.88 ± 0.01 ( P < 0.05) vs. 0.93 ± 0.01 ( P < 0.05)]. During SS, estimated fat oxidation increased [94 ± 6 vs. 61 ± 5 g ( P < 0.05)], whereas CHO oxidation decreased [271 ± 16 vs. 342 ± 14 g ( P < 0.05)] for Fat-adapt compared with HCHO. Tracer-derived estimates of plasma glucose uptake revealed no differences between treatments, suggesting muscle glycogen sparing accounted for reduced CHO oxidation. Direct assessment of muscle glycogen utilization showed a similar order of sparing (260 ± 26 vs. 360 ± 43 mmol/kg dry wt; P = 0.06). TT performance was 30.73 ± 1.12 vs. 34.17 ± 2.48 min for Fat-adapt and HCHO ( P = 0.21). These data show significant metabolic adaptations with a brief period of high-fat intake, which persist even after restoration of CHO availability. However, there was no evidence of a clear benefit of fat adaptation to cycling performance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 147 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3