Plasma lactate concentration and muscle blood flow during dynamic exercise with negative-pressure breathing

Author:

Kamijo Y.1,Takeno Y.1,Sakai A.1,Inaki M.1,Okumoto T.1,Itoh J.1,Yanagidaira Y.1,Masuki S.1,Nose H.1

Affiliation:

1. Department of Sports Medicine, Research Center on Aging and Adaptation, Shinshu University School of Medicine, Matsumoto 390-8621, Japan

Abstract

This study assessed the hypothesis that increasing cardiac filling pressure (CFP) would enhance contracting muscle blood flow (MBF) by stretching cardiopulmonary baroreceptors and attenuate the increase in plasma lactate concentration ([Lac]p) during dynamic exercise. Continuous negative-pressure breathing (CNPB) (−15 cmH2O) was used to increase the CFP by accelerating the venous return to the heart. In the first series of experiments, 10 men performed a graded exercise seated on a cycle ergometer with (N1) and without CNPB (C1). The increase in [Lac]p for N1 was attenuated at 60%, 90%, and 100% of maximal exercise intensity compared with that in C1 ( P < 0.001). Also, the increases in mean arterial pressure (MAP) and plasma catecholamine concentrations were attenuated in N1 compared with those in C1 throughout the graded exercise ( P < 0.05). However, heart rate and pulse pressure were not significantly influenced by CNPB. Second, we studied the impact of CNPB on forearm MBF during a rhythmic handgrip exercise in 5 of the 10 subjects. Forearm MBF was measured immediately after cessation of the exercise by venous occlusion plethysmography at rest, 30%, 50%, and 70% of maximal work load (WLmax) with (N2) and without CNPB (C2). Forearm MBF and vascular conductance for both trials increased with the increase in intensity, but forearm skin blood flow measured by laser-Doppler flowmetry remained unchanged. MBF and vascular conductance in N2, however, increased more than in C2 at every intensity ( P < 0.01) except for MBF at 70% WLmax, whereas the increase in MAP for N2 was attenuated compared with that in C2 ( P < 0.05). Thus augmented active muscle vasodilation occurred in N2 with a lower increase in MAP compared with that in C2. These findings suggest that the stretch of intrathoracic baroreceptors, such as cardiopulmonary mechanoreceptors, by CNPB increased MBF by suppressing sympathetic nerve activity. The attenuation of the increase in [Lac]p might be caused, at least partially, by the increased MBF.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3