Arterial properties of the carotid and femoral artery in endurance-trained and paraplegic subjects

Author:

Schmidt-Trucksäss Arno1,Schmid Andreas1,Brunner Christian2,Scherer Nicole1,Zäch Guido2,Keul Joseph1,Huonker Martin1

Affiliation:

1. Department of Prevention, Rehabilitation, and Sports Medicine, Center for Internal Medicine, Freiburg University Hospital, D-79106 Freiburg, Germany; and

2. Sports Medicine Department, Swiss Paraplegic Center, CH-6207 Nottwil, Switzerland

Abstract

In humans, the relationships of blood flow changes to structure, function, and shear rate of conducting arteries have not been thoroughly examined. Therefore, the purpose of this study was to investigate these parameters of the elastic-type, common carotid artery (CCA) and the muscular-type, common femoral artery (CFA) in long-term highly active and extremely inactive individuals, assuming that the impact of activity-induced blood flow changes on conduit arteries, if any, should be seen in these subjects. We examined 21 highly endurance-trained athletes (A), 10 paraplegic subjects (P), and 20 sedentary subjects (S) by means of noninvasive ultrasound. As a result, the CFA diameter and compliance were highest in A (9.7 ± 0.81 mm; 1.84 ± 0.54 mm2/kPa) and lowest in P (5.9 ± 0.7 mm; 0.54 ± 0.27 mm2/kPa) compared with S (8.3 ± 1.0 mm; 0.92 ± 0.48 mm2/kPa) with P < 0.01 among the groups. Both parameters correlated with each other ( r = 0.62; P < 0.01). Compared with A (378 ± 84 s−1; 37 ± 15 s−1) and S (356 ± 113 s−1; 36 ± 20 s−1), the peak and mean shear rates of the CFA were almost or more than doubled in P (588 ± 120 s−1; 89 ± 26 s−1). In the CCA, only the compliance and peak shear rate showed significant differences among the groups (A: 1.28 ± 0.47 mm2/kPa, 660 ± 138 s−1; S: 1.04 ± 0.27 mm2/kPa, 588 ± 109 s−1; P: 0.65 ± 0.22 mm2/kPa, 490 ± 149 s−1; P < 0.05). In conclusion, the results suggest a structural and functional adaptation in the CFA and a predominantly functional adaptation of the arterial wall properties to differences in the physical activity level and associated exercise-induced blood flow changes in the CCA. The results for humans confirm those from animal experiments. Similar shear rate values of S and P in the CFA support the hypothesis of constant shear stress regulation due to local blood flow changes in humans. On the other hand, the increased shear rate in the CFA in P indicates an at least partially nonphysiological response of the arterial wall in long-term chronic sympathectomy due to a change in local blood flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3