Mutagenesis analysis of human SM22: characterization of actin binding

Author:

Fu Yiping1,Liu Hong Wei1,Forsythe Sean M.1,Kogut Paul1,McConville John F.1,Halayko Andrew J.1,Camoretti-Mercado Blanca1,Solway Julian1

Affiliation:

1. Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637

Abstract

SM22 is a 201-amino acid actin-binding protein expressed at high levels in smooth muscle cells. It has structural homology to calponin, but how SM22 binds to actin remains unknown. We performed site-directed mutagenesis to generate a series of NH2-terminal histidine (His)-tagged mutants of human SM22 in Escherichia coli and used these to analyze the functional importance of potential actin binding domains. Purified full-length recombinant SM22 bound to actin in vitro, as demonstrated by cosedimentation assay. Binding did not vary with calcium concentration. The COOH-terminal domain of SM22 is required for actin affinity, because COOH terminally truncated mutants [SM22-(1–186) and SM22-(1–166)] exhibited markedly reduced cosedimentation with actin, and no actin binding of SM22-(1–151) could be detected. Internal deletion of a putative actin binding site (154-KKAQEHKR-161) partially prevented actin binding, as did point mutation to neutralize either or both pairs of positively charged residues at the ends of this region (KK154LL and/or KR160LL). Internal deletion of amino acids 170–180 or 170–186 also partially or almost completely inhibited actin cosedimentation, respectively. Of the three consensus protein kinase C or casein kinase II phosphorylation sites in SM22, only Ser-181 was readily phosphorylated by protein kinase C in vitro, and such phosphorylation greatly decreased actin binding. Substitution of Ser-181 to aspartic acid (to mimic serine phosphorylation) also reduced actin binding. Immunostains of transiently transfected airway myocytes revealed that full-length NH2-terminal FLAG-tagged SM22 colocalizes with actin filaments, whereas FLAG-SM22-(1–151) does not. These data confirm that SM22 binds to actin in vitro and in vivo and, for the first time, demonstrate that multiple regions within the COOH-terminal domain are required for full actin affinity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3