Aging reduces adaptive capacity and stress protein expression in the liver after heat stress

Author:

Hall D. M.1,Xu L.1,Drake V. J.1,Oberley L. W.2,Oberley T. D.3,Moseley P. L.4,Kregel K. C.1

Affiliation:

1. Department of Exercise Science, and

2. Radiation Research Laboratory, The University of Iowa, Iowa City, Iowa 52242;

3. Department of Pathology and Veterans Affairs Hospitals and Clinics, University of Wisconsin, Madison, Wisconsin 53705; and

4. Department of Internal Medicine and Laboratory of Environmental Stress and Adaptation, University of New Mexico, Albuquerque, New Mexico 87131

Abstract

A decline in an organism's ability to cope with stress through acute response protein expression may contribute to stress intolerance with aging. We investigated the influence of aging on stress tolerance and the capacity to synthesize the 70-kDa heat shock protein (HSP70) in young and old rats exposed to an environmental heating protocol. Livers were assessed for injury and HSP70 expression after heat stress by use of immunohistochemical and immunoblotting techniques. The inducible HSP70 response in the cytoplasm and nucleus was markedly reduced with age at several time points over a 48-h recovery period, although senescent rats were able to strongly express HSP70 early in recovery. Older animals had extensive zone-specific liver injury, which corresponded to the diminished HSP70 response observed in these regions, and a significant reduction in thermotolerance compared with their young counterparts. These data highlight the regional nature of stress-induced injury and HSP70 expression in the liver and the impact of aging on these responses. Furthermore, the results suggest a functional link between the age-related decrements in the expression of inducible HSP70 and the pathophysiological responses to heat stress.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3