Exercise-dependent growth hormone release is linked to markers of heightened central adrenergic outflow

Author:

Weltman Arthur12,Pritzlaff Cathy J.1,Wideman Laurie2,Weltman Judy Y.2,Blumer Jeffery L.3,Abbott Robert D.4,Hartman Mark L.2,Veldhuis Johannes D.2

Affiliation:

1. Departments of Human Services,

2. Medicine, and

3. Department of Pediatrics and Pharmacology, Rainbow Babies and Children's Hospital, Case Western Reserve University, Cleveland Ohio 44106

4. Health Evaluation Sciences, University of Virginia, Charlottesville, Virginia 22903; and

Abstract

To test the hypothesis that heightened sympathetic outflow precedes and predicts the magnitude of the growth hormone (GH) response to acute exercise (Ex), we studied 10 men [age 26.1 ± 1.7 (SE) yr] six times in randomly assigned order (control and 5 Ex intensities). During exercise, subjects exercised for 30 min (0900–0930) on each occasion at a single intensity: 25 and 75% of the difference between lactate threshold (LT) and rest (0.25LT, 0.75LT), at LT, and at 25 and 75% of the difference between LT and peak (1.25LT, 1.75LT). Mean values for peak plasma epinephrine (Epi), plasma norepinephrine (NE), and serum GH concentrations were determined [Epi: 328 ± 93 (SE), 513 ± 76, 584 ± 109, 660 ± 72, and 2,614 ± 579 pmol/l; NE: 2.3 ± 0.2, 3.9 ± 0.4, 6.9 ± 1.0, 10.7 ± 1.6, and 23.9 ± 3.9 nmol/l; GH: 3.6 ± 1.5, 6.6 ± 2.0, 7.0 ± 2.0, 10.7 ± 2.4, and 13.7 ± 2.2 μg/l for 0.25, 0.75, 1.0, 1.25, and 1.75LT, respectively]. In all instances, the time of peak plasma Epi and NE preceded peak GH release. Plasma concentrations of Epi and NE always peaked at 20 min after the onset of Ex, whereas times to peak for GH were 54 ± 6 (SE), 44 ± 5, 38 ± 4, 38 ± 4, and 37 ± 2 min after the onset of Ex for 0.25–1.75LT, respectively. ANOVA revealed that intensity of exercise did not affect the foregoing time delay between peak NE or Epi and peak GH (range 17–24 min), with the exception of 0.25LT ( P < 0.05). Within-subject linear regression analysis disclosed that, with increasing exercise intensity, change in (Δ) GH was proportionate to both ΔNE ( P = 0.002) and ΔEpi ( P = 0.014). Furthermore, within-subject multiple-regression analysis indicated that the significant GH increment associated with an antecedent rise in NE ( P = 0.02) could not be explained by changes in Epi alone ( P = 0.77). Our results suggest that exercise intensity and GH release in the human may be coupled mechanistically by central adrenergic activation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3