Affiliation:
1. Division of Respiratory and Critical Care Physiology and Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, California 90509 – 2910
Abstract
To calculate cardiac output by the indirect Fick principle, CO2 concentrations (Cco 2) of mixed venous (Cv̄CO2 ) and arterial blood are commonly estimated from Pco 2, based on the assumption that the CO2 pressure-concentration relationship (Pco 2-Cco 2) is influenced more by changes in Hb concentration and blood oxyhemoglobin saturation than by changes in pH. The purpose of the study was to measure and assess the relative importance of these variables, both in arterial and mixed venous blood, during rest and increasing levels of exercise to maximum (Max) in five healthy men. Although the mean mixed venous Pco 2 rose from 47 Torr at rest to 59 Torr at the lactic acidosis threshold (LAT) and further to 78 Torr at Max, the Cv̄CO2 rose from 22.8 mM at rest to 25.5 mM at LAT but then fell to 23.9 mM at Max. Meanwhile, the mixed venous pH fell from 7.36 at rest to 7.30 at LAT and to 7.13 at Max. Thus, as work rate increases above the LAT , changes in pH, reflecting changes in buffer base, account for the major changes in the Pco 2-Cco 2relationship, causing Cv̄CO2 to decrease, despite increasing mixed venous Pco 2. Furthermore, whereas the increase in the arteriovenous Cco 2 difference of 2.2 mM below LAT is mainly due to the increase in Cv̄CO2 , the further increase in the arteriovenous Cco 2 difference of 4.6 mM above LAT is due to a striking fall in arterial Cco 2 from 21.4 to 15.2 mM. We conclude that changes in buffer base and pH dominate the Pco 2-Cco 2 relationship during exercise, with changes in Hb and blood oxyhemoglobin saturation exerting much less influence.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献