A predictive model of fatigue in human skeletal muscles

Author:

Ding Jun1,Wexler Anthony S.12,Binder-Macleod Stuart A.13

Affiliation:

1. Interdisciplinary Graduate Program in Biomechanics and Movement Science,

2. Department of Mechanical Engineering, and

3. Department of Physical Therapy, University of Delaware, Newark, Delaware 19716

Abstract

Fatigue is a major limitation to the clinical application of functional electrical stimulation. The activation pattern used during electrical stimulation affects force and fatigue. Identifying the activation pattern that produces the greatest force and least fatigue for each patient is, therefore, of great importance. Mathematical models that predict muscle forces and fatigue produced by a wide range of stimulation patterns would facilitate the search for optimal patterns. Previously, we developed a mathematical isometric force model that successfully identified the stimulation patterns that produced the greatest forces from healthy subjects under nonfatigue and fatigue conditions. The present study introduces a four-parameter fatigue model, coupled with the force model that predicts the fatigue induced by different stimulation patterns on different days during isometric contractions. This fatigue model accounted for 90% of the variability in forces produced by different fatigue tests. The predicted forces at the end of fatigue testing differed from those observed by only 9%. This model demonstrates the potential for predicting muscle fatigue in response to a wide range of stimulation patterns.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3