Unilateral lung edema: effects on pulmonary gas exchange, hemodynamics, and pulmonary perfusion distribution

Author:

Slama Klaus1,Gesch Mareike2,Böck Johannes C.3,Pietschmann Sylvia M.2,Schaffartzik Walter4,Pison Ulrich2

Affiliation:

1. Department of Anesthesiology, Krankenhaus Spandau, D-13578; Departments of

2. Anesthesiology and Intensive Care Medicine and

3. Radiology, Charité, Campus Virchow-Klinikum, Humboldt-University, D-13353; and

4. Department of Anesthesiology, Critical Care Medicine, and Pain Therapy, Unfallkrankenhaus Marzahn, D-12683 Berlin, Germany

Abstract

Two types of unilateral lung edema in sheep were characterized regarding their effects on pulmonary gas exchange, hemodynamics, and distribution of pulmonary perfusion. One edema type was induced with aerosolized HCl (0.15 M, pH 1.0) and the other with NaCl (0.15 M, pH 7.4). Both aerosols were nebulized continuously for 4 h into left lungs. In HCl-treated animals, pulmonary gas exchange deteriorated [from a partial arterial O2 pressure-to-inspired O2 fraction ratio (PaO2 /Fi O2 ) of 254 at baseline to 187 after 4 h HCl]. In addition, pulmonary artery pressure and total pulmonary vascular resistance increased (from 16 to 19 mmHg and from 133 to 154 dyn · s · cm−5, respectively). In NaCl-treated animals, only the central venous pressure significantly increased (from 7 to 9 mmHg). Distribution of pulmonary perfusion (measured with fluorescent microspheres) changed differently in both groups. After HCl application, 6% more blood flow was directed to the treated lung, whereas, after NaCl, 5% more blood flow was directed to the untreated lung. HCl and NaCl treatment both induce an equivalent lung edema, but only HCl treatment is associated with gas exchange alteration and tissue damage. Redistribution of pulmonary perfusion maintains gas exchange during NaCl treatment and decreases it during HCl inhalation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3