Functional and molecular plasticity of γ and α1 GABAA receptor subunits in the dorsal motor nucleus of the vagus after experimentally induced diabetes

Author:

Boychuk Carie R.1,Smith Katalin C.1,Smith Bret N.1

Affiliation:

1. Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky

Abstract

Chronic experimentally induced hyperglycemia augments subunit-specific γ-aminobutyric acid A (GABAA) receptor-mediated inhibition of parasympathetic preganglionic motor neurons in the dorsal motor nucleus of the vagus (DMV). However, the contribution of α1 or γ GABAA receptor subunits, which are ubiquitously expressed on central nervous system neurons, to this elevation in inhibitory tone have not been determined. This study investigated the effect of chronic hyperglycemia/hypoinsulinemia on α1- and γ-subunit-specific GABAA receptor-mediated inhibition using electrophysiological recordings in vitro and quantitative RT-PCR. DMV neurons from streptozotocin-treated mice demonstrated enhancement of both phasic and tonic inhibitory currents in response to application of the α1-subunit-selective GABAA receptor-positive allosteric modulator zolpidem. Responses to low concentrations of the GABAA receptor antagonist gabazine suggested an additional increased contribution of γ-subunit-containing receptors to tonic currents in DMV neurons. Consistent with the functional elevation in α1- and γ-subunit-dependent activity, transcription of both the α1- and γ2-subunits was increased in the dorsal vagal complex of streptozotocin-treated mice. Overall, these findings suggest an increased sensitivity to both zolpidem and gabazine after several days of hyperglycemia/hypoinsulinemia, which could contribute to altered parasympathetic output from DMV neurons in diabetes. NEW & NOTEWORTHY Glutamate and GABA signaling in the dorsal vagal complex is elevated after several days of chronic hyperglycemia in a mouse model of type 1 diabetes. We report persistently enhanced GABAA receptor-mediated responses to the somnolescent zolpidem in preganglionic vagal motor neurons. These results imply a broader impact of chronic hyperglycemia on central vagal function than previously appreciated and reinforce the hypothesis that diabetes effects in the brain can impact regulation of metabolic homeostasis.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3