Dynamic Circuitry for Updating Spatial Representations. III. From Neurons to Behavior

Author:

Berman Rebecca A.,Heiser Laura M.,Dunn Catherine A.,Saunders Richard C.,Colby Carol L.

Abstract

Each time the eyes move, the visual system must adjust internal representations to account for the accompanying shift in the retinal image. In the lateral intraparietal cortex (LIP), neurons update the spatial representations of salient stimuli when the eyes move. In previous experiments, we found that split-brain monkeys were impaired on double-step saccade sequences that required updating across visual hemifields, as compared to within hemifield. Here we describe a subsequent experiment to characterize the relationship between behavioral performance and neural activity in LIP in the split-brain monkey. We recorded from single LIP neurons while split-brain and intact monkeys performed two conditions of the double-step saccade task: one required across-hemifield updating and the other required within-hemifield updating. We found that, despite extensive experience with the task, the split-brain monkeys were significantly more accurate for within-hemifield than for across-hemifield sequences. In parallel, we found that population activity in LIP of the split-brain monkeys was significantly stronger for the within-hemifield than for the across-hemifield condition of the double-step task. In contrast, in the normal monkey, both the average behavioral performance and population activity showed no bias toward the within-hemifield condition. Finally, we found that the difference between within-hemifield and across-hemifield performance in the split-brain monkeys was reflected at the level of single-neuron activity in LIP. These findings indicate that remapping activity in area LIP is present in the split-brain monkey for the double-step task and covaries with spatial behavior on within-hemifield compared to across-hemifield sequences.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference63 articles.

1. Andersen RA. Inferior parietal lobule function in spatial perception and visuomotor integration. In: Handbook of Physiology. The Nervous System. Higher Functions of the Brain. Bethesda, MD: Am. Physiol. Soc. 1987, sect. 1, vol. V, pt. 1, p. 483–518.

2. Neural coding of behavioral relevance in parietal cortex

3. Comparison of saccadic eye movements in humans and macaques to single-step and double-step target movements

4. Spatial Memory Following Shifts of Gaze. I. Saccades to Memorized World-Fixed and Gaze-Fixed Targets

5. Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3