Contribution of the Motor Cortex to the Structure and the Timing of Hindlimb Locomotion in the Cat: A Microstimulation Study

Author:

Bretzner Frédéric1,Drew Trevor1

Affiliation:

1. Department of Physiology, Université de Montréal, Montreal, Quebec, Canada

Abstract

We used microstimulation to examine the contribution of the motor cortex to the structure and timing of the hindlimb step cycle during locomotion in the intact cat. Stimulation was applied to the hindlimb representation of the motor cortex in 34 sites in three cats using either standard glass-insulated microelectrodes (16 sites in 1 cat) or chronically implanted microwire electrodes (18 sites in 2 cats). Stimulation at just suprathreshold intensities with the cat at rest produced multijoint movements at a majority of sites (21/34, 62%) but evoked responses restricted to a single joint, normally the ankle, at the other 13/34 (38%) sites. Stimulation during locomotion generally evoked larger responses than the same stimulation at rest and frequently activated additional muscles. Stimulation at all 34 sites evoked phase-dependent responses in which stimulation in swing produced transient increases in activity in flexor muscles while stimulation during stance produced transient decreases in activity in extensors. Stimulation with long (200 ms) trains of stimuli in swing produced an increased level of activity and duration of flexor muscles without producing changes in cycle duration. In contrast, stimulation during stance decreased the duration of the extensor muscle activity and initiated a new and premature period of swing, resetting the step cycle. Stimulation of the pyramidal tract in two of these three cats as well as in two additional ones produced similar effects. The results show that the motor cortex is capable of influencing hindlimb activity during locomotion in a similar manner to that seen for the forelimb.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3