A mixed Ca2+ channel blocker, A-1264087, utilizes peripheral and spinal mechanisms to inhibit spinal nociceptive transmission in a rat model of neuropathic pain

Author:

Xu Jun1,Chu Katharine L.1,Zhu Chang Z.1,Niforatos Wende1,Swensen Andrew1,Searle Xenia1,Lee Lance1,Jarvis Michael F.1,McGaraughty Steve1

Affiliation:

1. Neuroscience Research, AbbVie, North Chicago, Illinos

Abstract

N-, T- and P/Q-type voltage-gated Ca2+ channels are critical for regulating neurotransmitter release and cellular excitability and have been implicated in mediating pathological nociception. A-1264087 is a novel state-dependent blocker of N-, T- and P/Q-type channels. In the present studies, A-1264087 blocked (IC50 = 1.6 μM) rat dorsal root ganglia N-type Ca2+ in a state-dependent fashion. A-1264087 (1, 3 and 10 mg/kg po) dose-dependently reduced mechanical allodynia in rats with a spinal nerve ligation (SNL) injury. A-1264087 (4 mg/kg iv) inhibited both spontaneous and mechanically evoked activity of spinal wide dynamic range (WDR) neurons in SNL rats but had no effect in uninjured rats. The inhibitory effect on WDR neurons remained in spinally transected SNL rats. Injection of A-1264087 (10 nmol/0.5 μl) into the spinal cord reduced both spontaneous and evoked WDR activity in SNL rats. Application of A-1264087 (300 nmol/20 μl) into the receptive field on the hindpaw attenuated evoked but not spontaneous firing of WDR neurons. Using electrical stimulation, A-1264087 (4 mg/kg iv) inhibited Aδ- and C-fiber evoked responses and after-discharge of WDR neurons in SNL rats. These effects by A-1264087 were not present in uninjured rats. A-1264087 moderately attenuated WDR neuron windup in both uninjured and SNL rats. In summary, these results indicate that A-1264087 selectively inhibited spinal nociceptive transmission in sensitized states through both peripheral and central mechanisms.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3