Conductance-Based Model of the Voltage-Dependent Generation of a Plateau Potential in Subthalamic Neurons

Author:

Otsuka Takeshi1,Abe Takafumi1,Tsukagawa Takahisa1,Song Wen-Jie1

Affiliation:

1. Department of Electronic Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan

Abstract

Because the subthalamic nucleus (STN) acts as a driving force of the basal ganglia, it is important to know how the activities of STN neurons are regulated. Previously, we have reported that a subset of STN neurons generates a plateau potential in a voltage-dependent manner. These plateau potentials can be evoked only when the cell is hyperpolarized. Here, to examine the mechanism of the voltage-dependent generation of the plateau potential in STN neurons, we constructed a conductance-based model of the plateau-generating STN neuron based on experimental observations and compared simulation results with recordings in slices. The model consists of a single compartment containing a Na+ current, a delayed-rectifier K+ current, an A-type K+ current, an L-like long-lasting Ca2+ current, a T-type Ca2+ current, a Ca2+-dependent K+ current, and a leak current. Our simulation results showed that a plateau potential in the model could be induced in a voltage-dependent manner that depended on the inactivation properties of L-like long-lasting Ca2+ current. The model could also reproduce the generation of a plateau potential as a rebound potential after termination of hyperpolarizing current injection. In addition, we tested the stability of simulated plateau potentials against inhibitory perturbation and found that the model showed similar properties observed for the plateau potentials of STN neurons in slices. The effects of K+ channel blockade by TEA and intracellular Ca2+ ion chelation by BAPTA on the plateau duration were also tested in the model and were found to match experimental observations. Thus our STN neuron model could qualitatively reproduce a number of experimental observations on plateau potentials. Our results suggest that the inactivation of L-type Ca2+ channels plays an important role in the voltage-dependent generation of the plateau potential.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3