Increase in Adenosine Sensitivity in the Nucleus Accumbens Following Chronic Morphine Treatment

Author:

Brundege James M.1,Williams John T.1

Affiliation:

1. The Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201

Abstract

There is a growing body of evidence suggesting that the neuromodulator adenosine is involved in drug addiction and withdrawal and that adenosine signaling pathways may offer new targets for therapeutic treatments of addiction. Recent studies have suggested that chronic exposure to drugs of abuse may alter adenosine metabolism in the nucleus accumbens, a brain region critically involved in drug addiction and withdrawal. The present study examined the effects of chronic morphine treatment on the ability of adenosine to inhibit excitatory postsynaptic currents in nucleus accumbens medium spiny neurons. It was found that chronic morphine treatment via subcutaneous implantation of morphine pellets in rats for 1 wk did not alter the level of adenosine-mediated tonic inhibition of nucleus accumbens excitatory synapses. However, chronic morphine treatment did induce a leftward shift in the adenosine dose-response curve, indicating an increase in the sensitivity of synaptic currents to exogenously applied adenosine. This shift was not due to a change in adenosine receptors or their effectors, because chronic morphine treatment had no effect on the dose-response relationship of a nonmetabolized adenosine receptor agonist. When adenosine transport was blocked, the ability of chronic morphine to shift the adenosine dose-response curve was eliminated. These experiments suggest that the increase in the sensitivity of nucleus accumbens synapses to the inhibitory effects of adenosine may be due to a decrease in adenosine transport. The identification of these changes in the adenosine system after chronic drug exposure may help identify new therapeutic strategies aimed at easing withdrawal from opioids.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3