Neural correlates of changing intention in the human FEF and IPS

Author:

Astle Duncan E.12,Nixon Elena3,Jackson Stephen R.45,Jackson Georgina M.3

Affiliation:

1. Department of Experimental Psychology, University of Oxford;

2. Department of Psychology, Royal Holloway, University of London, Surrey;

3. Division of Psychiatry, Queen's Medical Centre, and

4. School of Psychology, University of Nottingham, Nottingham, United Kingdom; and

5. World Class University (WCU) Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea

Abstract

Previous research demonstrates that our apparent mental flexibility depends largely on the strength of our prior intention; changing our intention in advance enables a smooth transition from one task to another (e.g., Astle DE, Jackson GM, Swainson R. J Cogn Neurosci 20: 255–267, 2008; Duncan J, Emslie H, Williams P, Johnson R, Freer C. Cogn Psychol 30: 257–303, 1996; Husain M, Parton A, Hodgson TL, Mort D, Rees G. Nat Neurosci 6: 117–118, 2003). However, these necessarily rapid anticipatory mechanisms have been difficult to study in the human brain. We used EEG and magnetoencephalography, specifically event-related potentials and fields (ERPs and ERFs), respectively, to explore the neural correlates of this important aspect of mental flexibility. Subjects performed a manual version of a pro/antisaccade task using preparatory cues to switch between the pro- and antirules. When subjects switched their intention, we observed a positivity over central electrodes, which correlated significantly with our behavioral data; the greater the ERP effect, the stronger the subject's change of intention. ERFs, alongside subject-specific structural MRIs, were used to project into source space. When subjects switched their intention, they showed significantly elevated activity in the right frontal eye field and left intraparietal sulcus (IPS); the greater the left IPS activity on switch trials, the stronger the subject's change of intention. This network has previously been implicated in the top-down control of eye movements, but here we demonstrate its role in the top-down control of a task set, in particular, that it is recruited when we change the task that we intend to perform.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3