Investigation of Linear Coupling Between Single-Event Blood Flow Responses and Interictal Discharges in a Model of Experimental Epilepsy

Author:

Vanzetta Ivo12,Flynn Corey32,Ivanov Anton I.32,Bernard Christophe32,Bénar Christian G.32

Affiliation:

1. Centre National de la Recherche Scientifique, Unité Mixte de Rechereche 6193, Institut de Neurosciences Cognitives de la Méditerranée;

2. Université Aix-Marseille, Marseille, France

3. Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 751, Laboratoire Epilepsie et Cognition; and

Abstract

A successful outcome of epilepsy neurosurgery relies on an accurate delineation of the epileptogenic region to be resected. Functional magnetic resonance imaging (fMRI) would allow doing this noninvasively at high spatial resolution. However, a clear, quantitative description of the relationship between hemodynamic changes and the underlying epileptiform neuronal activity is still missing, thereby preventing the systematic use of fMRI for routine epilepsy surgery planning. To this aim, we used a local epilepsy model to record simultaneously cerebral blood flow (CBF) with laser Doppler (LD) and local field potentials (LFP) in rat frontal cortex. CBF responses to individual interictal-like spikes were large and robust. Their amplitude correlated linearly with spike amplitude. Moreover, the CBF response added linearly in time over a large range of spiking rates. CBF responses could thus be predicted by a linear model of the kind currently used for the interpretation of fMRI data, but including also the spikes’ amplitudes as additional information. Predicted and measured CBF responses matched accurately. For high spiking frequencies (above ∼0.2 Hz), the responses saturated but could eventually recover, indicating the presence of multiple neurovascular coupling mechanisms, which might act at different spatiotemporal scales. Spatially, CBF responses peaked at the center of epileptic activity and displayed a spatial specificity at least as good as the millimeter. These results suggest that simultaneous electroencephalographic and blood flow-based fMRI recordings should be suitable for the noninvasive precise localization of hyperexcitable regions in epileptic patients candidate for neurosurgery.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3