Caloric Restriction Does Not Offset Age-Associated Changes in the Biophysical Properties of Motoneurons

Author:

Kalmar Jayne M.,Button Duane C.,Gardiner Kalan,Cahill Farrell,Gardiner Phillip F.

Abstract

Age-associated changes in neuromuscular function may be due to a loss of motor neurons as well as changes in their biophysical properties. Neuronal damage imposed by reactive oxygen species may contribute to age-related deficits in CNS function. Thus we hypothesized that aging would alter the functional properties of motoneurons and that caloric-restriction would offset these changes. Intracellular recordings were made from lumbar motoneurons of old Fisher Brown Norway (FBN) fed ad libitum (oldAL, 30.8 ± 1.3 mo) or on a fortified calorie-restricted diet from 14 wk of age (oldCR, 31.0 ± 1.8 mo). Basic and rhythmic firing properties recorded from these aged motoneurons (MNs) were compared with properties recorded from young FBN controls (young, 8.4 ± 4.6 mo). Compared with young MNs, old MNs had a 104% greater ( P < 0.001) afterhyperpolarization potential (AHP), a 21.1% longer AHP half-decay time ( P < 0.05), 28.7% lower rheobase ( P < 0.001), 49.7% greater ( P < 0.001) input resistance, 21.1% ( P < 0.0001) less spike frequency adaptation, lower minimal (30.2%, P < 0.0001) and maximal (16.7%, P < 0.0001) steady-state firing frequencies, a lower (35.5%, P < 0.0001) frequency-current slope, and an increased incidence of persistent inward current. Because basic properties became more diverse in old MNs and the slope of the frequency-current relationship, which is normally similar for high- and low-threshold MNs, was lower in the old group, we conclude that aging alters the biophysical properties of MNs in a fashion that cannot be simply attributed to a loss of high-threshold MNs. Surprisingly, caloric restriction, which is known to attenuate aging-associated changes in hindlimb muscles, had no effect on the progress of aging in the innervating MNs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3