Affiliation:
1. McGovern Institute for Brain Research and Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
Abstract
How is an evanescent wish to move translated into a concrete action? This simple question and puzzling miracle remains a focal point of motor systems neuroscience. Where does the difficulty lie? A great deal has been known about biomechanics for quite some time. More recently, there have been significant advances in our understanding of how the spinal system is organized into modules corresponding to spinal synergies, which are fixed patterns of multimuscle recruitment. But much less is known about how the supraspinal system recruits these synergies in the correct spatiotemporal pattern to effectively control movement. We argue that what makes the problem of supraspinal control so difficult is that it emerges as a result of multiple convergent and redundant sensorimotor loops. Because these loops are convergent, multiple modes of information are mixed before being sent to the spinal system; because they are redundant, information is overlapping such that a mechanism must exist to eliminate the redundancy before the signal is sent to the spinal system. Given these complex interactions, simple correlation analyses between movement variables and neural activity are likely to render a confusing and inconsistent picture. Here, we suggest that the perspective of sensorimotor loops might help in achieving a better systems-level understanding. Furthermore, state-of-the-art techniques in neurotechnology, such as optogenetics, appear to be well suited for investigating the problem of motor control at the level of loops.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献