Analysis of variability in length of sleep state bouts reveals memory-free sleep subcomponents consistent among primary insomnia patients

Author:

Bizzotto Roberto1ORCID,Zamuner Stefano2

Affiliation:

1. Neuroscience Institute, National Research Council, Padua, Italy

2. Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline, Stevenage, United Kingdom

Abstract

The statistical distributions of bout lengths for the different (macro) sleep states (wake, N1, N2, N3, and REM sleep) are essential to understanding whether any memory-free subcomponent (“micro state”) is involved in the organization of sleep. Micro state detection can be prevented by the fusion of data including various sources of variability, in particular by the differences in sleep architecture between individuals, along sleep time (or nighttime), or between different nights. In this analysis, a mathematical model of sleep was adopted to disentangle these features and advance the understanding of the dynamics and mechanisms of sleep and its states. The analysis involved 116 primary insomnia patients taking placebo before going to bed and undergoing polysomnography for one night. The individual sequences of macro sleep states had been previously modeled with a mixed-effect nonhomogeneous modified Markov chain model, from which individual conditional probability distributions for the bout durations were derived in this analysis as functions of sleep time. The probability distributions, affected by neither subject, night-time, nor multiple-night pooling, substantially changed at ¼ and ¾ sleep time, had modified exponential shape, and were best described as the sum of one to four exponentials, depending on the sleep state. The time constants and proportions of bouts contributing to each exponential were similar in the different subjects, changing over sleep time. Variability in bout durations thus indicated the presence of multiple memory-free sleep subcomponents whose mean residence times and access probabilities could be identified and shown to be consistent among the studied subjects.NEW & NOTEWORTHY We present a new methodology for deriving, from polysomnography data, the individual conditional probability for the duration of the bouts of wake, N1, N2, N3, and REM sleep. We evaluated the variability of this probability within and between primary insomnia patients and along sleep time. The multiexponential shapes of the probability distributions within the individuals revealed memory-free mechanisms and sleep subcomponents with consistent features in the studied population.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3