Contribution of ion pair complexation with bile salts to biliary excretion of organic cations in rats

Author:

Song Im-Sook1,Chung Suk-Jae1,Shim Chang-Koo1

Affiliation:

1. Department of Pharmaceutics, College of Pharmacy, Seoul National University, Seoul 151-742, Korea

Abstract

The objective of this study was to examine whether ion pair complexation with endogenous bile salts in hepatocytes contributes to the preferential biliary excretion of organic cations (OCs). Tributylmethylammonium (TBuMA; mol wt 200) and triethylmethylammonium (TEMA; mol wt 116) were selected as model OCs that exhibit significant and negligible biliary excretion, respectively, in rats. The apparent lipophilicity of TBuMA, but not that of TEMA, was increased by the presence of either rat bile or specific bile salts, suggesting the formation of lipophilic ion pair complexes for TBuMA with bile salts in the liver. The uptake of TBuMA into canalicular liver plasma membrane (cLPM) vesicles, but not that of TEMA, was increased in the presence of bile salts, with a significant increase for both ATP-dependent transport and passive diffusion. The uptake of TBuMA in the presence of the bile salts was inhibited by representative P-glycoprotein (P-gp) substrates and vice versa, suggesting the involvement of P-gp in the canalicular excretion of TBuMA-bile salt complexes in vivo. Increased affinity toward P-gp is suggested as the mechanism responsible for the increased ATP-dependent transport for the ion pair complexes. We propose that ion pair formation with bile slats in hepatocytes may be responsible for the preferential biliary excretion of high-molecular-weight OCs including TBuMA.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3