Transport of protein in the abdominal wall during intraperitoneal therapy. I. Theoretical approach

Author:

Flessner Michael F.1

Affiliation:

1. University of Rochester Medical Center, Rochester, New York 14620

Abstract

Intraperitoneal therapies such as peritoneal dialysis or regional chemotherapy use large volumes of solution within the peritoneal cavity. These volumes increase intraperitoneal hydrostatic pressure (Pip), which causes flow of the solution into tissues that surround the cavity. The goal of this paper is to integrate new experimental findings in a rigorous mathematical model to predict protein transport from the cavity into tissue. The model describes non-steady-state diffusion and convection of protein through a deformable porous medium with simultaneous exchange with the microcirculation and local tissue binding. Model parameters are dependent on local tissue pressure, which varies with Pip. Solute interactions with the tissue in terms of local distribution volume (solute void space), local binding, and retardation relative to solvent flow are demonstrated to be major determinants of tissue concentration profiles and protein penetration from the peritoneal cavity. The model predicts the rate of fluid loss from the cavity to the abdominal wall in dialysis patients to be 94 ml/h, within the observed range of 60–100 ml/h. The model is fitted to published transport data of IgG, and the retardation coefficient f is estimated to be 0.3, which markedly reduces the rate of protein penetration and is far lower than previously published estimates. With the value of f = 0.3, model calculations predict that Pipof 4.4 mmHg and dialysis duration of 24 h result in several millimeters of protein penetration into the tissue.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3