VIII. Pathological consequences of rotavirus infection and its enterotoxin

Author:

Morris Andrew P.1,Estes Mary K.2

Affiliation:

1. Department of Integrative Biology, University of Texas at Houston Medical School, Houston 77030; and

2. Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030

Abstract

Rotaviral infection in neonatal animals and young children leads to acute self-limiting diarrhea, but infected adults are mainly asymptomatic. Recently, significant in-roads have been made into our understanding of this disease: both viral infection and virally manufactured nonstructural protein (NSP)4 evoke intracellular Ca2+([Ca2+]i) mobilization in native and transformed gastrointestinal epithelial cells. In neonatal mouse pup mucosa models, [Ca2+]ielevation leads to age-dependent halide ion movement across the plasma membrane, transepithelial Clsecretion, and, unlike many microbial enterotoxins, initial cyclic nucleotide independence to secretory diarrhea. Similarities between rotavirus infection and NSP4 function suggest that NSP4 is responsible for these enterotoxigenic effects. NSP4-mediated [Ca2+]imobilization may further facilitate diarrhea by signaling through other Ca2+-sensitive cellular processes (cation channels, ion and solute transporters) to potentiate fluid secretion while curtailing fluid absorption. Apart from these direct actions in the mucosa at the onset of diarrhea, innate host-mediated defense mechanisms, triggered by either or both viral replication and NSP4-induced [Ca2+]imobilization, sustain the diarrheal response. This secondary component appears to involve the enteric nervous system and may be cyclic nucleotide dependent. Both phases of diarrhea occur in the absence of significant inflammation. Thus age-dependent rotaviral disease represents an excellent experimental paradigm for understanding a noninflammatory diarrhea.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3