Affiliation:
1. Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island 02903
Abstract
Muscle strips from experimental acute cholecystitis (AC) exhibit a defective contraction. The mechanisms responsible for this impaired contraction are not known. The present studies investigated the nature of these abnormalities. AC was induced by ligating the common bile duct of guinea pigs for 3 days. Contraction was studied in enzymatic dissociated muscle cells. Cholecystokinin (CCK) and prostaglandin E2 (PGE2) receptor binding studies were performed by radioreceptor assay. The levels of lipid peroxidation, cholesterol, phospholipid, and H2O2 as well as the catalase and superoxide dismutase (SOD) activities were determined. PGE2 content was measured by radioimmunoassay. Muscle contraction induced by CCK, ACh, or KCl was significantly reduced in AC, but PGE2-induced contraction remained normal. GTPγS, diacyglycerol (DAG), and 1,4,5-trisphosphate (IP3), which bypass the plasma membrane, caused a normal contraction in AC. The number of functional receptors for CCK was significantly decreased, whereas those for PGE2 remained unchanged in AC. There was a reduction in the phospholipid content and increase in the level of lipid peroxidation as well as H2O2 content in the plasma membrane in AC. The PGE2 content and the activities of catalase and SOD were also elevated. These data suggest that AC cause damage to the constituents of the plasma membrane of muscle cells. The preservation of the PGE2 receptors may be the result of muscle cytoprotection.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献