Activated Kupffer cells cause a hypermetabolic state after gentle in situ manipulation of liver in rats

Author:

Schemmer Peter1,Enomoto Nobuyuki1,Bradford Blair U.1,Bunzendahl Hartwig2,Raleigh James A.3,Lemasters John J.4,Thurman Ronald G.1

Affiliation:

1. Laboratory of Hepatobiology and Toxicology, Department of Pharmacology,

2. Department of Surgery,

3. Department of Radiation Oncology, and

4. Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599

Abstract

Harvesting trauma to the graft dramatically decreases survival after liver transplantation. Since activated Kupffer cells play a role in primary nonfunction, the purpose of this study was to test the hypothesis that organ manipulation activates Kupffer cells. To mimic what occurs with donor hepatectomy, livers from Sprague-Dawley rats underwent dissection with or without gentle organ manipulation in a standardized manner in situ. Perfused livers exhibited normal values for O2 uptake (105 ± 5 μmol · g−1 · h−1) measured polarigraphically; however, 2 h after organ manipulation, values increased significantly to 160 ± 8 μmol · g−1 · h−1 and binding of pimonidazole, a hypoxia marker, increased about threefold ( P < 0.05). Moreover, Kupffer cells from manipulated livers produced three- to fourfold more tumor necrosis factor-α and PGE2, whereas intracellular calcium concentration increased twofold after lipopolysaccharide compared with unmanipulated controls ( P < 0.05). Gadolinium chloride and glycine prevented both activation of Kupffer cells and effects of organ manipulation. Furthermore, indomethacin given 1 h before manipulation prevented the hypermetabolic state, hypoxia, depletion of glycogen, and release of PGE2 from Kupffer cells. These data indicate that gentle organ manipulation during surgery activates Kupffer cells, leading to metabolic changes dependent on PGE2 from Kupffer cells, which most likely impairs liver function. Thus modulation of Kupffer cell function before organ harvest could be beneficial in human liver transplantation and surgery.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3