Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle

Author:

Ro Seungil1,Hatton William J.1,Koh Sang Don1,Horowitz Burton1

Affiliation:

1. Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada 89557

Abstract

Small-conductance Ca2+-activated K+ (SK) channels are important participants in inhibitory neurotransmission in gastrointestinal smooth muscles. Three isoforms of an SK channel family were cloned from murine proximal colon smooth muscle. The transcripts encoding these subunits (SK1, SK2, and SK3) were detected in murine proximal colon and other peripheral tissues. The mRNA of each subunit was expressed at different levels in murine and canine colonic smooth muscles. The mRNA quantitative ratio of SK transcriptional expression in murine proximal colon is SK2 > SK3 > SK1; transcriptional expression of SK isoforms in canine proximal colon is minimal. SK3 immunohistochemical localization in murine small intestine (jejunum) and proximal colon showed immunoreactivity in circular and longitudinal muscularis. In transversely sectioned muscularis, staining was localized at the cell membrane in smooth muscle cells. Immunoreactivity was more intense in myenteric ganglia between longitudinal and circular muscularis and neuronal processes in circular and longitudinal muscularis. Transient expression of mSK1, mSK2, and mSK3 in COS cells resulted in Ca2+-activated voltage-independent channels. mSK1 is less sensitive to apamin compared with SK2 and showed intracellular Ca2+ sensitivity (10−8 to 10−6 M) in asymmetrical K+ (5/140 mM K+) gradients. Our results suggest that SK channel expression varies in colonic myocytes from different species and may contribute differentially to inhibitory junction potentials.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3