Prostanoids stimulate K secretion and Cl secretion in guinea pig distal colon via distinct pathways

Author:

Halm Dan R.1,Halm Susan Troutman1

Affiliation:

1. Department of Physiology and Biophysics, Wright State University, Dayton, Ohio 45435

Abstract

Short-circuit current ( I sc) and transepithelial conductance ( G t) were measured in guinea pig distal colonic mucosa isolated from submucosa and underlying muscle layers. Indomethacin (2 μM) and NS-398 (2 μM) were added to suppress endogenous production of prostanoids. Serosal addition of PGE2 (10 nM) stimulated negative I scconsistent with K secretion, and concentrations >30 nM stimulated positive I sc consistent with Cl secretion. PGE2 also stimulated G t at low and high concentrations. Dose responses to prostanoids specific for EP prostanoid receptors were consistent with stimulating K secretion through EP2 receptors, based on a rank order potency (from EC50 values) of PGE2 (1.9 nM) > 11-deoxy-PGE1 (8.3 nM) > 19( R)-hydroxy-PGE2 (13.9 nM) > butaprost (67 nM) > 17-phenyl-trinor-PGE2 (307 nM) ≫ sulprostone (>10 μM). An isoprostane, 8-iso-PGE2, stimulated K secretion with an EC50 of 33 nM. Cl secretory response was stimulated by PGD2 and BW-245C, a DP prostanoid receptor-specific agonist: BW-245C (15 nM) > PGD2 (30 nM) > PGE2 (203 nM). Agonists specific for FP, IP, and TP prostanoid receptors were ineffective in stimulating I sc and G t at concentrations <1 μM. These results indicate that PGE2stimulated electrogenic K secretion through activation of EP2 receptors and electrogenic KCl secretion through activation of DP receptors. Thus stimulation of Cl secretion in vivo would occur either via physiological concentrations of PGD2(<100 nM) or pathophysiological concentrations of PGE2(>100 nM) that could occur during inflammatory conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3