Murine colonic mucosa hyperproliferation. II. PKC-β activation and cPKC-mediated cellular CFTR overexpression

Author:

Umar Shahid1,Sellin Joseph H.1,Morris Andrew P.1

Affiliation:

1. Department of Integrative Biology, Pharmacology, and Physiology; and Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77030

Abstract

In the companion article (Umar S, Scott J, Sellin JH, Dubinsky WP, and Morris AP, Am J Physiol Gastrointest Liver Physiol 278: 753–764, 2000), we have shown that transmissible murine colonic hyperplasia (TMCH) increased cellular cystic fibrosis transmembrane conductance regulator (CFTR) mRNA and protein expression, relocalized CFTR within colonocytes, and enhanced mucosal cAMP-dependent Clsecretion. We show here that these changes were dependent on elevated cellular levels of membrane-bound Ca2+- and diacylglycerol-sensitive protein kinase C (PKC) activity (12-fold), induced by selective (3- to 4-fold) rises in conventional PKC (cPKC) isoform expression and membrane translocation. Three cPKC isoforms were detected in isolated crypts: α, β1, and β2. cPKC-β1 rises preceded and those of cPKC-α and cPKC-β2 paralleled cellular hyperproliferation and its effects on CFTR expression and cAMP-dependent Clcurrent secretion. Only cPKC-β1 and cPKC-β2 were membrane translocated during TMCH. Furthermore, only cPKC-β1 trafficked to the nucleus, whereas cPKC-β2 remained partitioned among cytosolic, membrane, and cytoskeletal subcellular fractions. Modest increases in novel PKC-ε (nPKC-ε) expression and subcellular membrane partitioning were recorded during TMCH, but no changes were seen for PKC-δ or -η. No nPKC isoform nuclear partitioning was detected. The orally bioactive cPKC inhibitor Ro-32–0432 reversed both TMCH and elevated cellular CFTR mRNA levels, whereas a pharmacologically inert analog (Ro-31–6045) failed to inhibit either response. On the basis of these facts, we present a new hypothesis whereby PKC-dependent cellular proliferation promotes endogenous cellular CFTR levels. PKC-β1 was identified as a candidate regulatory PKC isoform.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3