Tumor-influenced amino acid transport activities in zonal-enriched hepatocyte populations

Author:

Easson Alexandra M.1,Pawlik Timothy M.1,Fischer Craig P.1,Conroy Jennifer L.1,Sgroi Dennis2,Souba Wiley W.1,Bode Barrie P.1

Affiliation:

1. Surgical Oncology Research Laboratories, Department of Surgery, and

2. Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

Abstract

Cancer influences hepatic amino acid metabolism in the host. To further investigate this relationship, the effects of an implanted fibrosarcoma on specific amino acid transport activities were measured in periportal (PP)- and perivenous (PV)-enriched rat hepatocyte populations. Na+-dependent glutamate transport rates were eightfold higher in PV than in PP preparations but were relatively unaffected during tumor growth. System N-mediated glutamine uptake was 75% higher in PV than in PP preparations and was stimulated up to twofold in both regions by tumor burdens of 9 ± 4% of carcass weight compared with hepatocytes from pair-fed control animals. Excessive tumor burdens (26 ± 7%) resulted in hypophagia, loss of PV-enriched system N activities, and reduced transporter stimulation. Conversely, saturable arginine uptake was enhanced fourfold in PP preparations and was induced twofold only after excessive tumor burden. These data suggest that hepatic amino acid transporters are differentially influenced by cancer in a spatial and temporal manner, and they represent the first report of reciprocal zonal enrichment of system N and saturable arginine uptake in the mammalian liver.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The transport of glutamine into mammalian cells;Frontiers in Bioscience;2007

2. Glutamine metabolism and signaling in the liver;Frontiers in Bioscience;2007

3. Hepatocyte ploidy in normal young rat;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2003-03

4. Recent Molecular Advances in Mammalian Glutamine Transport;The Journal of Nutrition;2001-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3