Different types of contractions in rat colon and their modulation by oxidative stress

Author:

Gonzalez Asensio1,Sarna Sushil K.1

Affiliation:

1. Departments of Surgery and Physiology, Medical College of Wisconsin and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53226

Abstract

The aim of this study was to investigate the modulation of in vitro rat colonic circular muscle contractions by dextran sodium sulfate (DSS)-induced inflammation and in spontaneous inflammation in HLA-B27 rats. We also examined the potential role of hydrogen peroxide (H2O2) in modulating excitation-contraction coupling. The muscle strips from the middle colon generated spontaneous phasic contractions and giant contractions (GCs), the proximal colon strips generated primarily phasic contractions, and the distal colon strips were mostly quiescent. The spontaneous phasic contractions and GCs were not affected by inflammation, but the response to ACh was suppressed in DSS-treated rats and in HLA-B27 rats. H2O2production was increased in the muscularis of the inflamed colon. Incubation of colonic muscle strips with H2O2suppressed the spontaneous phasic contractions and concentration and time dependently reduced the response to ACh; in the middle colon, it also increased the frequency of GCs. We conclude that H2O2mimics the suppression of the contractile response to ACh in inflammation. H2O2also selectively suppresses phasic contractions and increases the frequency of GCs, as found previously in inflamed dog and human colons.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3