Rotavirus infection impairs intestinal brush-border membrane Na+-solute cotransport activities in young rabbits

Author:

Halaihel Nabil1,Liévin Vanessa1,Alvarado Francisco1,Vasseur Monique1

Affiliation:

1. Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie, Université de Paris XI, 92296 Châtenay-Malabry, France

Abstract

The mechanism of rotavirus diarrhea was investigated by infecting young, specific pathogen-free, New Zealand rabbits with a lapine rotavirus, strain La/RR510. With 4-wk-old animals, virus shedding into the intestinal lumen peaked at 72 h postinfection (hpi), and a mild, watery diarrhea appeared at 124 hpi. No intestinal lesions were seen up to 144 hpi, indicating that diarrhea does not follow mucosal damage but can precede it, as if cell dysfunction were the cause, not the consequence, of the histological lesions. Kinetic analyses with brush-border membrane vesicles isolated from infected rabbits revealed strong inhibition of both Na+-d-glucose (SGLT1) and Na+-l-leucine symport activities. For both symporters, only maximum velocity decreased with time. The density of phlorizin-binding sites and SGLT1 protein antigen in the membrane remained unaffected, indicating that the virus effect on this symporter is direct. Because SGLT1 supports water reabsorption under physiological conditions, the mechanism of rotavirus diarrhea may involve a generalized inhibition of Na+-solute symport systems, hence, of water reabsorption. Massive water loss through the intestine may eventually overwhelm the capacity of the organ for water reabsorption, thereby helping the diarrhea to get established.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3