Author:
Cohen Jeremiah Y.,Pouget Pierre,Heitz Richard P.,Woodman Geoffrey F.,Schall Jeffrey D.
Abstract
Numerous studies have described different functional cell types in the frontal eye field (FEF), but the reliability of the distinction between these types has been uncertain. Studies in other brain areas have described specific differences in the width of action potentials recorded from different cell types. To substantiate the functionally defined cell types encountered in FEF, we measured the width of spikes of visual, movement, and visuomovement types of FEF neurons in macaque monkeys. We show that visuomovement neurons had the thinnest spikes, consistent with a role in local processing. Movement neurons had the widest spikes, consistent with their role in sending eye movement commands to subcortical structures such as the superior colliculus. Visual neurons had wider spikes than visuomovement neurons, consistent with their role in receiving projections from occipital and parietal cortex. These results show how structure and function of FEF can be linked to guide inferences about neuronal architecture.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献