Distance-Dependent Modifiable Threshold for Action Potential Back-Propagation in Hippocampal Dendrites

Author:

Bernard C.1,Johnston D.1

Affiliation:

1. Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030

Abstract

In hippocampal CA1 pyramidal neurons, action potentials generated in the axon back-propagate in a decremental fashion into the dendritic tree where they affect synaptic integration and synaptic plasticity. The amplitude of back-propagating action potentials (b-APs) is controlled by various biological factors, including membrane potential ( Vm). We report that, at any dendritic location ( x), the transition from weak (small-amplitude b-APs) to strong (large-amplitude b-APs) back-propagation occurs when Vm crosses a threshold potential, θ x. When Vm > θ x, back-propagation is strong (mostly active). Conversely, when Vm < θ x, back-propagation is weak (mostly passive). θ x varies linearly with the distance ( x) from the soma. Close to the soma, θ x ≪ resting membrane potential (RMP) and a strong hyperpolarization of the membrane is necessary to switch back-propagation from strong to weak. In the distal dendrites, θ x ≫ RMP and a strong depolarization is necessary to switch back-propagation from weak to strong. At ∼260 μm from the soma, θ260 ≈ RMP, suggesting that in this dendritic region back-propagation starts to switch from strong to weak. θ x depends on the availability or state of Na+ and K+ channels. Partial blockade or phosphorylation of K+ channels decreases θ x and thereby increases the portion of the dendritic tree experiencing strong back-propagation. Partial blockade or inactivation of Na+ channels has the opposite effect. We conclude that θ x is a parameter that captures the onset of the transition from weak to strong back-propagation. Its modification may alter dendritic function under physiological and pathological conditions by changing how far large action potentials back-propagate in the dendritic tree.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3