Does visually induced self-motion affect grip force when holding an object?

Author:

Bringoux Lionel1,Lepecq Jean-Claude1,Danion Frédéric2

Affiliation:

1. Institute of Movement Sciences, Aix-Marseille University and Centre National de la Recherche Scientifique, Marseille, France; and

2. Institute of Neuroscience of la Timone, Aix-Marseille University and Centre National de la Recherche Scientifique, Marseille, France

Abstract

Accurate control of grip force during object manipulation is necessary to prevent the object from slipping, especially to compensate for the action of gravitational and inertial forces resulting from hand/object motion. The goal of the current study was to assess whether the control of grip force was influenced by visually induced self-motion (i.e., vection), which would normally be accompanied by changes in object load. The main task involved holding a 400-g object between the thumb and the index finger while being seated within a virtual immersive environment that simulated the vertical motion of an elevator across floors. Different visual motions were tested, including oscillatory (0.21 Hz) and constant-speed displacements of the virtual scene. Different arm-loading conditions were also tested: with or without the hand-held object and with or without oscillatory arm motion (0.9 Hz). At the perceptual level, ratings from participants showed that both oscillatory and constant-speed motion of the elevator rapidly induced a long-lasting sensation of self-motion. At the sensorimotor level, vection compellingness altered arm movement control. Spectral analyses revealed that arm motion was entrained by the oscillatory motion of the elevator. However, we found no evidence that grip force used to hold the object was visually affected. Specifically, spectral analyses revealed no component in grip force that would mirror the virtual change in object load associated with the oscillatory motion of the elevator, thereby allowing the grip-to-load force coupling to remain unaffected. Altogether, our findings show that the neural mechanisms underlying vection interfere with arm movement control but do not interfere with the delicate modulation of grip force. More generally, those results provide evidence that the strength of the coupling between the sensorimotor system and the perceptual level can be modulated depending on the effector.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3