Author:
Prodoehl Janey,Yu Hong,Wasson Pooja,Corcos Daniel M.,Vaillancourt David E.
Abstract
Previous work using visual feedback has identified two distinct sensorimotor circuits in the basal ganglia (BG): one that scaled with the duration of force and one that scaled with the rate of change of force. The present study compared functional MRI signal changes in the BG during a grip force task using either visual or auditory feedback to determine whether the BG nuclei process auditory and visual feedback similarly. We confirmed the same two sensorimotor circuits in the BG. Activation in the striatum and external globus pallidus (GPe) scaled linearly with the duration of force under visual and auditory feedback conditions, with similar slopes and intercepts across feedback type. The pattern of signal change for the internal globus pallidus (GPi) and subthalamic nucleus (STN) was nonlinear and parameters of the exponential function were altered by feedback type. Specifically, GPi and STN activation decreased exponentially with the rate of change of force. The rate constant and asymptote of the exponential functions for GPi and STN were greater during auditory than visual feedback. In a comparison of the BOLD signal between BG regions, GPe had the highest percentage of variance accounted for and this effect was preserved for both feedback types. These new findings suggest that neuronal activity of specific BG nuclei is affected by whether the feedback is derived from visual or auditory inputs. Also, the data are consistent with the hypothesis that the GPe has a high level of information convergence from other BG nuclei, which is preserved across different sensory feedback modalities.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献